根据左侧文章目录,快速定位想要的符号
声调
语法 |
效果 |
语法 |
效果 |
语法 |
效果 |
bar{x} |
![bar{x}](/wp-content/uploads/replace/800428e01628d6d4550deb96aac12abf.png) |
acute{eta} |
![acute{eta}](/wp-content/uploads/replace/c71ec5874b216a1cc0d5a8a2f2ac33f2.png) |
check{alpha} |
![check{alpha}](/wp-content/uploads/replace/32a2ef0df93207da6e41ba44229ea321.png) |
grave{eta} |
![grave{eta}](/wp-content/uploads/replace/4abbe8f40dffb127cd61a927140dd0b6.png) |
breve{a} |
![breve{a}](/wp-content/uploads/replace/42c957f8f0586490b52e34a8c5d89e8e.png) |
ddot{y} |
![ddot{y}](/wp-content/uploads/replace/dd0fdaee9dcebaf8cdd776017623c67f.png) |
dot{x} |
![dot{x}](/wp-content/uploads/replace/f403e11e0f6c56671756f1d0c71461a2.png) |
hat{alpha} |
![hat{alpha}](/wp-content/uploads/replace/4ec5e4097cf57e9c2200c5eaa64473cd.png) |
tilde{iota} |
![tilde{iota}](/wp-content/uploads/replace/5aadde507a89f98eb6238a40a8b51e84.png) |
函数
语法 |
效果 |
语法 |
效果 |
sintheta |
![sin!theta](/wp-content/uploads/replace/8b8f229aa2a5a0b34b5c2c3d02894482.png) |
costheta |
![cos!theta](/wp-content/uploads/replace/b9c4211213dfeec40e239e6d0c5fbeab.png) |
arcsinfrac{L}{r} |
![arcsinfrac{L}{r}](https://df-l.com/wp-content/uploads/2024/06/59c47fbda47ed6da13841e777d49dd4e.png) |
arccosfrac{T}{r} |
![arccosfrac{T}{r}](https://df-l.com/wp-content/uploads/2024/06/79bed5fd8aa7405d98f639dd1dfbb427.png) |
sinh g |
![sinh!g](/wp-content/uploads/replace/f32b434cbbd90685438b12505f6d9f89.png) |
cosh h |
![cosh!h](/wp-content/uploads/replace/67be73b79408e3cc69b76538a9064b02.png) |
operatorname{sh}j |
![operatorname{sh}j](/wp-content/uploads/replace/6b1f126d134424ea0d3c20f9b71a3c72.png) |
operatorname{argsh}k |
![operatorname{argsh}k](/wp-content/uploads/replace/4f93ecf1900c72ff33db99c4ddf2740e.png) |
operatorname{argch}l |
![operatorname{argch}l](/wp-content/uploads/replace/ff2d94c3a8c0291d2426f0fa11439e59.png) |
operatorname{th}i |
![operatorname{th}i](/wp-content/uploads/replace/e4986899307cda044aa0c9f250af2efa.png) |
k’(x)=lim_{Delta xto 0}frac{k(x)-k(x-Delta x)}{Deltax} |
![k'(x)=lim_{Delta xto0}!frac{k(x)-k(x-Delta x)}{Delta x}](https://df-l.com/wp-content/uploads/2024/06/a35afcec7be6f2e0e49964f3997eeac6.png) |
limsup S |
![limsup S](/wp-content/uploads/replace/d10ff03ad32a87469eb4003dc65e697b.png) |
max H |
![max!H](/wp-content/uploads/replace/7f9dc019881214fa412616549577c7a7.png) |
min L |
![min!L](/wp-content/uploads/replace/861aa6c6721f60717073eee718c3e12c.png) |
sup t |
![sup t](/wp-content/uploads/replace/7ef1552e6cc28cc1b6be30853ea15066.png) |
exp!t |
![exp!t](/wp-content/uploads/replace/ad0f9ea06e807ca276df6bb16a2e5840.png) |
lg X |
![lg!X](/wp-content/uploads/replace/a95a6d6caddb59c3c02377a2eb6d3684.png) |
log X |
![log!X](/wp-content/uploads/replace/d4e2b5dce751d8f694399d07df672827.png) |
ker x |
![ker x](/wp-content/uploads/replace/5887f00b9e15e8afd8dc716d0f42f887.png) |
deg x |
![deg!x](/wp-content/uploads/replace/4d61a74addd57c130663e423135a9670.png) |
Pr x |
![Pr x](/wp-content/uploads/replace/773797af7c6fac0b165f98444a002ec9.png) |
det x |
![det!x](/wp-content/uploads/replace/22790c46f67bcbde28ddc3a5ec42b381.png) |
arg x |
![arg x](/wp-content/uploads/replace/f1ac17c7b842ef161a4fbf96c762024e.png) |
dim x |
![dim x](/wp-content/uploads/replace/81743459eba0d8dca400be539087c414.png) |
tantheta |
![tan!theta](/wp-content/uploads/replace/7db7104596274ec22edb03e500b69844.png) |
arctanfrac{L}{T} |
![arctanfrac{L}{T}](https://df-l.com/wp-content/uploads/2024/06/97143846d4543215119d569364979c2a.png) |
tanh i |
![tanh!i](/wp-content/uploads/replace/a0aed813b2d5b23d0f1a9130383d2a1d.png) |
operatorname{ch}h |
![operatorname{ch}h](/wp-content/uploads/replace/f982e9b0abd4d7a2248fd64e83ccd3b4.png) |
operatorname{argth}m |
![operatorname{argth}m](/wp-content/uploads/replace/cb59ffdcbe998ed510782b244fcea82f.png) |
liminf I |
![liminf I](/wp-content/uploads/replace/0ddceab99283d4994a26e316cee31e67.png) |
inf s |
![inf s](/wp-content/uploads/replace/aa8f6cc58c784fe79b54c247342480a6.png) |
ln X |
![ln!X](/wp-content/uploads/replace/931c375289f15f7dbe858f0f906f0ed5.png) |
log_alpha X |
![log_alpha!X](/wp-content/uploads/replace/c77e3915720bba3fe76f5f40baadcb10.png) |
gcd(T,U,V,W,X) |
![!gcd(T,U,V,W,X)](/wp-content/uploads/replace/b41c99fd2002bae8b3edecf2daf5ee29.png) |
hom x |
![hom x](/wp-content/uploads/replace/b1c82b1fbf1eb6954270a573a1c6e007.png) |
lim_{tto n}T |
![lim_{tto n}T](/wp-content/uploads/replace/dd71c10b6391bca8d6119255c23937c8.png) |
同余
语法 |
效果 |
语法 |
效果 |
pmod{m} |
![pmod{m}](/wp-content/uploads/replace/c9db583c5aae9bfe84334340162f33eb.png) |
a bmod b |
![a bmod b](/wp-content/uploads/replace/13d91c8f7b798d52ac588367aeff4029.png) |
微分
语法 |
效果 |
语法 |
效果 |
语法 |
效果 |
nabla |
![nabla](/wp-content/uploads/replace/87ee1b18bec7f03b88c92c399079b39e.png) |
partial x |
![partial x](/wp-content/uploads/replace/e9e97dcaee5c007a70dbfd45d0d5ba56.png) |
mathrm{d}x |
![mathrm{d}x](/wp-content/uploads/replace/49159fe37a364f88c012948a56213cb9.png) |
dot x |
![dot x](/wp-content/uploads/replace/d0b1c9fa8d7e36fc7f5c7f3afc7fc317.png) |
ddot y |
![ddot y](/wp-content/uploads/replace/a9404e95e2a02c8ae1bddca79468e7c3.png) |
|
|
集合
语法 |
效果 |
语法 |
效果 |
语法 |
效果 |
语法 |
效果 |
语法 |
效果 |
forall |
![forall](/wp-content/uploads/replace/21f47f9f48b448f85cd329894af263f9.png) |
exists |
![exists](/wp-content/uploads/replace/431e747619eee4ab44d6822c6d2eb6d6.png) |
empty |
![empty](/wp-content/uploads/replace/c4394495eb01959a5eae3f64fa78ca41.png) |
emptyset |
![emptyset](/wp-content/uploads/replace/c4394495eb01959a5eae3f64fa78ca41.png) |
varnothing |
![varnothing](/wp-content/uploads/replace/c54316b8ce60cfeb4e754ac54dda12de.png) |
in |
![in](/wp-content/uploads/replace/0d7623751ac9aabd786403e641d97c72.png) |
ni |
![ni](/wp-content/uploads/replace/65b3bcb85231eb50f0e1e7e20ee2cc53.png) |
notin |
![notin](/wp-content/uploads/replace/fe42d65580fab9e998f50d0a44619581.png) |
notin |
![notin](/wp-content/uploads/replace/b57ee4b64da0bee86ab251f71f9f79a4.png) |
subset |
![subset](/wp-content/uploads/replace/11eb89941b8da7d01e2152c09cdb006a.png) |
subseteq |
![subseteq](/wp-content/uploads/replace/41a3378fe8029e598110769de4d7ea95.png) |
supset |
![supset](/wp-content/uploads/replace/2f162e85451760b972366932453924ae.png) |
supseteq |
![supseteq](/wp-content/uploads/replace/229f2b71788b49d75edcd702e58662d0.png) |
cap |
![cap](/wp-content/uploads/replace/7a97fb6edc1b2a7e806de07e999e83fe.png) |
bigcap |
![bigcap](/wp-content/uploads/replace/4d19c73caa122e8669f7feeb69089651.png) |
cup |
![cup](/wp-content/uploads/replace/580e8907ba073fd21d552d4a6d4aeb8a.png) |
bigcup |
![bigcup](/wp-content/uploads/replace/789c14eb1bf97c936f68e6260e20d959.png) |
biguplus |
![biguplus](/wp-content/uploads/replace/bf6fe196af8cd86b3d7f9b5957353fc4.png) |
sqsubset |
![sqsubset](/wp-content/uploads/replace/9528dec97c679f8644f14bf42c2c6f38.png) |
sqsubseteq |
![sqsubseteq](/wp-content/uploads/replace/eb311374ab5e39431df17acd20d740e4.png) |
sqsupset |
![sqsupset](/wp-content/uploads/replace/94066ba6c3ab6f4ac6e17d0330876fc9.png) |
sqsupseteq |
![sqsupseteq](/wp-content/uploads/replace/b6f89a1c30d033faf340fae19f741fe9.png) |
sqcap |
![sqcap](/wp-content/uploads/replace/efe957316072b74d56d7215cf16391ec.png) |
sqcup |
![sqcup](/wp-content/uploads/replace/59ec26811986bb639cd2fbc0f2f56172.png) |
bigsqcup |
![bigsqcup](/wp-content/uploads/replace/8926672840f4e48ef84c1d39b83fcd27.png) |
逻辑
语法 |
效果 |
语法 |
效果 |
语法 |
效果 |
语法 |
效果 |
p |
![p](/wp-content/uploads/replace/c5a9ffb03df65df26ba2081161f6606b.png) |
land |
![land](/wp-content/uploads/replace/26d218b60cf8d39b33b7749659df6494.png) |
wedge |
![wedge](/wp-content/uploads/replace/39cda3893f5e6585c5dc91e019aa84e6.png) |
bigwedge |
![bigwedge](/wp-content/uploads/replace/f82e33371abde0cbbe908fa479e5c037.png) |
bar{q} to p |
![pagecolor{White} bar{q} to p](/wp-content/uploads/replace/90e8d240f75d3b8624405e1b1488be68.png) |
lor |
![lor](/wp-content/uploads/replace/f1557863884a1eb68d6dfc80af164a97.png) |
vee |
![vee](/wp-content/uploads/replace/e34c61cee74bb50c3106bc295f33e9b6.png) |
bigvee |
![bigvee](/wp-content/uploads/replace/9ed63467617915bbaa3bdf2ae36d3513.png) |
lnot |
![lnot](/wp-content/uploads/replace/e7ab558f2e5bf6b41399f1ec5bb1ab0c.png) |
neg q |
![pagecolor{White} neg q](/wp-content/uploads/replace/b692fa0d39d8f81569ce9898b4e2755c.png) |
setminus |
![setminus](/wp-content/uploads/replace/36789ade5ffea044459c1118fe48d842.png) |
smallsetminus |
![pagecolor{White} smallsetminus](/wp-content/uploads/replace/95d6515cb63696e19afea7aafcb06848.png) |
根号
语法 |
效果 |
语法 |
效果 |
sqrt{3} |
![sqrt{3}](/wp-content/uploads/replace/d6b699d248147687ae02d90ad3ea48a9.png) |
sqrt[n]{3} |
![pagecolor{White}sqrt[n]{3}](/wp-content/uploads/replace/21cb8585a0a0b036ee2109bb1d68eb1e.png) |
关系符号
语法 |
效果 |
Delta ABCsimDelta XYZ |
![Delta ABCsimDelta XYZ!](/wp-content/uploads/replace/e8bc83551e05d0ea34b8853a1aa8e84c.png) |
sqrt{3}approx1.732050808ldots |
![sqrt{3}approx1.732050808ldots](/wp-content/uploads/replace/20df740bdacded71b889942b07262e9c.png) |
simeq |
![simeq](/wp-content/uploads/replace/9a721158da5f4d2d5e063acfd4d4fe54.png) |
cong |
![cong](/wp-content/uploads/replace/b49e373f1edbda091c6d07910d3a4c29.png) |
dot= |
![dot=](/wp-content/uploads/replace/e101556b2ab8bcf21adacac446bf45f8.png) |
ggg |
![ggg](/wp-content/uploads/replace/f4ee288995662b73379e76e64dc86507.png) |
gg |
![gg](/wp-content/uploads/replace/3dc07a8150201d49619c493c3eb121cd.png) |
> |
![>,](/wp-content/uploads/replace/23085bb343d009824f2d2c246e32d121.png) |
ge |
![ge](/wp-content/uploads/replace/704e05fb4f1ad1bc416588d3035c439e.png) |
geqq |
![geqq](/wp-content/uploads/replace/e600f6c75c73a7c2615143f3844462ce.png) |
= |
![=,](/wp-content/uploads/replace/cf4343c6b584aa0ff4c4158f4710f069.png) |
leq |
![leq](/wp-content/uploads/replace/26bdebe0ac66075e0a4a070718536a70.png) |
leqq |
![leqq](/wp-content/uploads/replace/dfe5902aa99fad0ad87e76d883970f0b.png) |
< |
![<,](/wp-content/uploads/replace/c29ed62f3b409461c00dc8e3f4dcd9f6.png) |
ll |
![ll](/wp-content/uploads/replace/15fd25a45a58a3982d77e1f8a22bd7a6.png) |
lll |
![lll](/wp-content/uploads/replace/d7ac1eeaab396aab1a82432156c17e64.png) |
(x-y)^2equiv(-x+y)^2equiv x^2-2xy+y^2 |
![(x-y)^2equiv(-x+y)^2equiv x^2-2xy+y^2](/wp-content/uploads/replace/e0ffb922e231ddcecba9b2745855607d.png) |
xnotequiv N |
![xnotequiv N](/wp-content/uploads/replace/591ecc76e5c209361240b09c63a510cf.png) |
xne A |
![xne A](/wp-content/uploads/replace/4aeb00fa9044f1a884bf2ae21837503a.png) |
xneq C |
![xneq C](/wp-content/uploads/replace/befd4c9b6564f3e00823f3511ba923fb.png) |
tpropto v |
![tpropto v](/wp-content/uploads/replace/07fc452366c7768d1abdef6b5112f3e1.png) |
pm |
![pm](/wp-content/uploads/replace/8ed88d591ccdd525bbc7292d9692779b.png) |
mp |
![mp](/wp-content/uploads/replace/b97f71bdf140f9ec1df107a773aff2d7.png) |
因为所以
begin{align}
because
begin{cases}
acute{a}x^2+bx^2+cgtrless0gtrlessgrave{a}x^2+bx^2+c
acute{a}>0>grave{a}
end{cases}
therefore
frac{-bpmsqrt{b^2-4acute{a}c}}{2acute{a}}{}_lessgtr^gtrlessx_lessgtr^gtrlessfrac{-bpmsqrt{b^2-4grave{a}c}}{2grave{a}}
end{align}
![LaTeX各种符号](https://df-l.com/wp-content/uploads/2024/06/8105aed2a6a0372d348af577ea8652d8.png)
几何符号
特征 |
语法 |
效果 |
|
菱形 |
Diamond |
![Diamond](/wp-content/uploads/replace/f07c8c2e30a596b8714f1515388ba624.png) |
|
正方形 |
Box |
![Box](/wp-content/uploads/replace/8675adbb69d3b1901f4a0827088bc2a4.png) |
|
三角形 |
Delta |
Delta |
![Delta!](/wp-content/uploads/replace/91129e27e13006313da239f246cbdd33.png) |
图型 |
triangle |
![triangle](/wp-content/uploads/replace/d9d17e14b08a7a60e5a9c238adc67adc.png) |
|
角名 |
angleAlphaBetaGamma |
![angleAlphaBetaGamma](/wp-content/uploads/replace/f3950bcbef77eee7903adb4ab215bd67.png) |
|
角度 |
sin!frac{pi}{3}=sin60^operatorname{omicron}=frac{sqrt{3}}{2} |
![sin!frac{pi}{3}=sin60^operatorname{omicron}=frac{sqrt{3}}{2}](https://df-l.com/wp-content/uploads/2024/06/da0804e5be1869c583e761bb38e2f007.png) |
|
垂直 |
perp |
![perp](/wp-content/uploads/replace/c14b5fe3cd99368931bdb6601afaf0b7.png) |
|
箭头符号
语法 |
效果 |
语法 |
效果 |
语法 |
效果 |
leftarrow |
![leftarrow](/wp-content/uploads/replace/0e783eb991880e6874e717583878ca4d.png) |
gets |
![gets](/wp-content/uploads/replace/2307cdadd44368af088e5318a9fe1673.png) |
rightarrow |
![rightarrow](/wp-content/uploads/replace/983a000f983276b923bf1ad45d27349a.png) |
to |
![to](/wp-content/uploads/replace/0f38f592350d62a7ce521051893bbd02.png) |
leftrightarrow |
![leftrightarrow](/wp-content/uploads/replace/5d242f9c227320a2cec57d90270aef84.png) |
longleftarrow |
![longleftarrow](/wp-content/uploads/replace/d204012800143422854b943120d4e85f.png) |
longrightarrow |
![longrightarrow](/wp-content/uploads/replace/ad69222ffd46bc34a9f9e8d8b8bb345b.png) |
mapsto |
![mapsto](/wp-content/uploads/replace/99f6030cf6bf28b8fcae8dc4752f6821.png) |
longmapsto |
![longmapsto](/wp-content/uploads/replace/6805878895cd32d5198a14eaa980d3ef.png) |
hookrightarrow |
![hookrightarrow](/wp-content/uploads/replace/673d463338cbb36ed0771f5e6c2d72c9.png) |
hookleftarrow |
![hookleftarrow](/wp-content/uploads/replace/a00bb5f9aa3dea3a5d3e1040b4a73180.png) |
nearrow |
![nearrow](/wp-content/uploads/replace/96d74b52cbfff6f4cea5b0484cd544a2.png) |
searrow |
![searrow](/wp-content/uploads/replace/b98e25964fae098e5fb0fcbf8ba98b05.png) |
swarrow |
![swarrow](/wp-content/uploads/replace/a3b29672c71ed435577d8b2af0b3ded6.png) |
nwarrow |
![nwarrow](/wp-content/uploads/replace/19201ab35dbddd1c10cb10c775e688b0.png) |
uparrow |
![uparrow](/wp-content/uploads/replace/1cc785f3d118869a689223f782a6a808.png) |
downarrow |
![downarrow](/wp-content/uploads/replace/817d36198b4b134f651ab04123e10414.png) |
updownarrow |
![updownarrow](/wp-content/uploads/replace/fb581fbd5867eb92e8b5b212932f1a70.png) |
语法 |
效果 |
语法 |
效果 |
语法 |
效果 |
语法 |
效果 |
rightharpoonup |
![rightharpoonup](/wp-content/uploads/replace/3892705fd3316d61b9f69871e22d0e6c.png) |
rightharpoondown |
![rightharpoondown](/wp-content/uploads/replace/d959413d2cb72d25f0c58e111f34146d.png) |
leftharpoonup |
![leftharpoonup](/wp-content/uploads/replace/923af88384c58c734626b0f8850d4ba5.png) |
leftharpoondown |
![leftharpoondown](/wp-content/uploads/replace/a423a084778f9eccbd5e355079086bb2.png) |
upharpoonleft |
![upharpoonleft](/wp-content/uploads/replace/4faa8c9de72a525f15b14af8d339e647.png) |
upharpoonright |
![upharpoonright](/wp-content/uploads/replace/4bbb70465456005cf68896a404cd2710.png) |
downharpoonleft |
![downharpoonleft](/wp-content/uploads/replace/a9d9af2a579d35ac999187b2220a7625.png) |
downharpoonright |
![downharpoonright](/wp-content/uploads/replace/4d41c94835fc70bdcd99802560fe34d1.png) |
语法 |
效果 |
语法 |
效果 |
语法 |
效果 |
Leftarrow |
![Leftarrow](/wp-content/uploads/replace/6121c05223a4499473e2c9f82735fcdb.png) |
Rightarrow |
![Rightarrow](/wp-content/uploads/replace/f7433f84e6a352c7da69245840c44364.png) |
Leftrightarrow |
![Leftrightarrow](/wp-content/uploads/replace/b55693284135e180a89e019b3c745f3c.png) |
Longleftarrow |
![Longleftarrow](/wp-content/uploads/replace/9d70caf858da43acd104b98ae23b13a0.png) |
Longrightarrow |
![Longrightarrow](/wp-content/uploads/replace/3d1e35af655215f40845326a1045e814.png) |
Longleftrightarrow (or iff) |
![Longleftrightarrow](/wp-content/uploads/replace/d7ebe7414659a1101dfb8f862b46dd12.png) |
Uparrow |
![Uparrow](/wp-content/uploads/replace/5bbe7d3ba9699567a7fa190199f6a61a.png) |
Downarrow |
![Downarrow](/wp-content/uploads/replace/791a9566549841dac739343895ccb8b7.png) |
Updownarrow |
![Updownarrow](/wp-content/uploads/replace/f030f17a763225b47546124d3b719d09.png) |
特殊符号
语法 |
效果 |
语法 |
效果 |
语法 |
效果 |
语法 |
效果 |
语法 |
效果 |
语法 |
效果 |
eth |
![eth](/wp-content/uploads/replace/33b5abebdd42c3369f194870238e5f8b.png) |
S |
![S](/wp-content/uploads/replace/1d536e8a15be1ea2a064a059b7c43c38.png) |
P |
![P](/wp-content/uploads/replace/84fcfd83eebdd37dab449f9240864e86.png) |
% |
![%](/wp-content/uploads/replace/93c6b0212e817394428c1b5c4619e1e6.png) |
dagger |
![dagger](/wp-content/uploads/replace/9f307c8c3e8c87e1803a40e6fddcd5ab.png) |
ddagger |
![ddagger](/wp-content/uploads/replace/acfd5f6a8067fb3516f98191a8c83fbf.png) |
star |
![star](/wp-content/uploads/replace/30547cfecacf4348a1c61fb50da5b098.png) |
* |
![*](/wp-content/uploads/replace/2118f019a5f591297baaed31f32be4eb.png) |
ldots |
![ldots](/wp-content/uploads/replace/2c13649be28f0619ff3674dd02a94f72.png) |
smile |
![smile](/wp-content/uploads/replace/37ae565e487a12dc1fe43ebbea66f188.png) |
frown |
![frown](/wp-content/uploads/replace/c16d86a61e073fb4fe8e4331cffd46ac.png) |
wr |
![wr](/wp-content/uploads/replace/8fd171578150eb344bd07d46a4047265.png) |
语法 |
效果 |
语法 |
效果 |
语法 |
效果 |
oplus |
![oplus](/wp-content/uploads/replace/b18271c78955fe719ce854e1b153feeb.png) |
bigoplus |
![bigoplus](/wp-content/uploads/replace/b306b5c9f172b3877e450dceadc3112c.png) |
otimes |
![otimes](/wp-content/uploads/replace/6954e06fa7b1b2a486a2bfd03dfc204b.png) |
bigotimes |
![bigotimes](/wp-content/uploads/replace/80c9513fb21554d5bf78cb05d7356aa6.png) |
times |
![times](/wp-content/uploads/replace/fe0656aef89733c0cdd07cf91eadbc37.png) |
cdot |
![cdot](/wp-content/uploads/replace/eb158650861700567a1c9a9ad00dc91e.png) |
div |
![div](/wp-content/uploads/replace/984416fb16e695c62025bab595ee637b.png) |
circ |
![circ](/wp-content/uploads/replace/7a3eccf1ea302b3e68dac61bc6bfb4df.png) |
bullet |
![bullet](/wp-content/uploads/replace/e06be7e3c44187e017aa4f220c8633c4.png) |
bigodot |
![bigodot](/wp-content/uploads/replace/e93af5f1d61351ddbca28081bb22505b.png) |
boxtimes |
![boxtimes](/wp-content/uploads/replace/5d330b8cca6fd389b214d5a6dac7fd5c.png) |
boxplus |
![boxplus](/wp-content/uploads/replace/d0a02a2543a074a80502343fd944c705.png) |
语法 |
效果 |
语法 |
效果 |
语法 |
效果 |
语法 |
效果 |
triangleleft |
![triangleleft](/wp-content/uploads/replace/5cfaab32c39ce1f8d68e8dde31f0f3de.png) |
triangleright |
![triangleright](/wp-content/uploads/replace/e51ac4b02ad1cc51ede419d68c604ccd.png) |
infty |
![infty](/wp-content/uploads/replace/3a22f4da33bf2edf6b90101caf879db0.png) |
bot |
![bot](/wp-content/uploads/replace/8f679cfb7863d875e776044311e37303.png) |
top |
![top](/wp-content/uploads/replace/f6b2c581b6a922cd0ab287c860dd4f36.png) |
vdash |
![vdash](/wp-content/uploads/replace/ee91adaa08a6ec15d2fa811400c38a86.png) |
vDash |
![vDash](/wp-content/uploads/replace/aa87c68f789193694f314e3a336b78d3.png) |
Vdash |
![Vdash](/wp-content/uploads/replace/d88d73af361cbe2871ad131562fc5ec0.png) |
models |
![models](/wp-content/uploads/replace/0350f704d89c42712a18c5389857f46a.png) |
lVert |
![lVert](/wp-content/uploads/replace/87541ba601192a45163e97cabe649616.png) |
rVert |
![rVert](/wp-content/uploads/replace/20e8507027a547b5c8e73dc82c7c3ccd.png) |
|
|
语法 |
效果 |
语法 |
效果 |
语法 |
效果 |
imath |
![imath](/wp-content/uploads/replace/23eddf6765478c79207edfa15493e7c2.png) |
hbar |
![hbar](/wp-content/uploads/replace/b9111ae728ff7c82426565aedc6f09c9.png) |
ell |
![ell](/wp-content/uploads/replace/e9dbdfbdb5e06e3bcff5c3f9eb50af5e.png) |
mho |
![mho](/wp-content/uploads/replace/6c1ef22a4d5cf4c547116495fae1c28c.png) |
Finv |
![Finv](/wp-content/uploads/replace/c6cb0fb3d9905c629fd27767deb02771.png) |
Re |
![Re](/wp-content/uploads/replace/36dee9ab36e5efc420177356b9210f47.png) |
Im |
![Im](/wp-content/uploads/replace/6123c6afaed7af711cfb1a782a6b4184.png) |
wp |
![wp](/wp-content/uploads/replace/3908b191f708aa59d55d7e31622c0cbb.png) |
complement |
![complement](/wp-content/uploads/replace/72acc78c8b6983baa0476faa43fa4c5d.png) |
语法 |
效果 |
语法 |
效果 |
语法 |
效果 |
语法 |
效果 |
diamondsuit |
![diamondsuit](/wp-content/uploads/replace/c84228fa13d0c251138cb6aff8d87916.png) |
heartsuit |
![heartsuit](/wp-content/uploads/replace/2e6b3f8e9f25ab2869e6fadbb44a36a1.png) |
clubsuit |
![clubsuit](/wp-content/uploads/replace/50085fa3cc03b1aa9759213cc06cb1b8.png) |
spadesuit |
![spadesuit](/wp-content/uploads/replace/9ef2994cb08d600eb11318d30f343abf.png) |
Game |
![Game](/wp-content/uploads/replace/3236a89a79626df04895cd295398b101.png) |
flat |
![flat](/wp-content/uploads/replace/4f162654844684e0fa979634bed40240.png) |
natural |
![natural](/wp-content/uploads/replace/e360f0476fd8d89d66eb63682b60e01e.png) |
sharp |
![sharp](/wp-content/uploads/replace/c838c78d0db45577735b7dc0d3d5f8e1.png) |
分数、矩阵和多行列式
![LaTeX各种符号](http://rufzo5fy8.hn-bkt.clouddn.com/gitpage/latex/fraction_matrices_determinant.png)
上标、下标及积分等
功能 |
语法 |
效果 |
上标 |
a^2 |
![pagecolor{White} a^2](/wp-content/uploads/replace/bc7f65d52ac4da6a3796f119e3371f97.png) |
下标 |
a_2 |
![pagecolor{White} a_2](/wp-content/uploads/replace/7d814bee39a9a1952d7aee4fea4f90bb.png) |
组合 |
a^{2+2} |
![pagecolor{White} a^{2+2}](/wp-content/uploads/replace/1d360d632f25783f471292b34e4302c1.png) |
a_{i,j} |
![pagecolor{White} a_{i,j}](/wp-content/uploads/replace/d2e6213f98414be5e317f5f0c8820706.png) |
|
结合上下标 |
x_2^3 |
![pagecolor{White} x_2^3](/wp-content/uploads/replace/8531cf337207bd00b99b7ff35b3fa198.png) |
前置上下标 |
{}_1^2!X_3^4 |
![pagecolor{White} {}_1^2!X_3^4](/wp-content/uploads/replace/571d6ad0535de08871c5d5166ae17d4c.png) |
导数(HTML) |
x' |
![pagecolor{White} x'](/wp-content/uploads/replace/7b9df6f44a5e951bbf3ed0cf8e152ef7.png) |
导数(PNG) |
x^prime |
![pagecolor{White} x^prime](/wp-content/uploads/replace/817e263e9faa58f2777e07533ac30f5f.png) |
导数(错误) |
xprime |
![pagecolor{White} xprime](/wp-content/uploads/replace/bb7c4757ecaa6a5862cd6af3d98f2ccf.png) |
导数点 |
dot{x} |
![pagecolor{White} dot{x}](/wp-content/uploads/replace/ee9446561fd51c54c6425af969f0b944.png) |
ddot{y} |
![pagecolor{White} ddot{y}](/wp-content/uploads/replace/d1c8f63a788717c1f1656fe222639525.png) |
|
向量 |
vec{c} |
![pagecolor{White} vec{c}](/wp-content/uploads/replace/ae1fa86f401ec38f6aaa181764e64d60.png) |
overleftarrow{a b} |
![pagecolor{White} overleftarrow{a b}](/wp-content/uploads/replace/a79d61251ddd01752c66476a32deff4e.png) |
|
overrightarrow{c d} |
![pagecolor{White} overrightarrow{c d}](/wp-content/uploads/replace/a0a750cef589af52addf880df6e7c2ff.png) |
|
widehat{e f g} |
![pagecolor{White} widehat{e f g}](/wp-content/uploads/replace/73c2b60662a0620300c1531b701d4f20.png) |
|
上弧(注: 正确应该用 overarc, 但在这里行不通。要用建议的语法作为解决办法) |
overset{frown} {AB} |
![pagecolor{White} overset{frown} {AB}](/wp-content/uploads/replace/0d3fee9b5ceb0725d06e139aa0d3e2a9.png) |
上划线 |
overline{h i j} |
![pagecolor{White} overline{h i j}](/wp-content/uploads/replace/4a797dbae4388a6f9766679e22bccf62.png) |
下划线 |
underline{k l m} |
![pagecolor{White} underline{k l m}](/wp-content/uploads/replace/bdd71c2d68e85c0a7ff361c25d654cba.png) |
上括号 |
overbrace{1+2+cdots+100} |
![pagecolor{White} overbrace{1+2+cdots+100}](/wp-content/uploads/replace/bb73166f4f121610d40c95dacabfdc30.png) |
begin{matrix} 5050 overbrace{ 1+2+cdots+100 }end{matrix} |
![pagecolor{White} begin{matrix} 5050 overbrace{ 1+2+cdots+100 } end{matrix}](https://df-l.com/wp-content/uploads/2024/06/73c0e4b49730d106b752a7c3715b0c3d.png) |
|
下括号 |
underbrace{a+b+cdots+z} |
![pagecolor{White} underbrace{a+b+cdots+z}](/wp-content/uploads/replace/f4dc105f232aad750f43ba87779f754b.png) |
begin{matrix} underbrace{ a+b+cdots+z } 26end{matrix} |
![pagecolor{White} begin{matrix} underbrace{ a+b+cdots+z } 26 end{matrix}](https://df-l.com/wp-content/uploads/2024/06/bc9dd69fffd702f4846f73579620c811.png) |
|
求和 |
sum_{k=1}^N k^2 |
![pagecolor{White} sum_{k=1}^N k^2](https://df-l.com/wp-content/uploads/2024/06/6a4791650b77862a6d6bf83f286d9f0c.png) |
begin{matrix} sum_{k=1}^N k^2 end{matrix} |
![pagecolor{White} begin{matrix} sum_{k=1}^N k^2 end{matrix}](/wp-content/uploads/replace/99eed555eb64ba7712d23417d4e8ab34.png) |
|
求积 |
prod_{i=1}^N x_i |
![pagecolor{White} prod_{i=1}^N x_i](https://df-l.com/wp-content/uploads/2024/06/09f3d0f277e7d0da504ca31e5f546988.png) |
begin{matrix} prod_{i=1}^N x_i end{matrix} |
![pagecolor{White} begin{matrix} prod_{i=1}^N x_i end{matrix}](/wp-content/uploads/replace/7ca626250b20502007d2ae29c6138c78.png) |
|
上积 |
coprod_{i=1}^N x_i |
![pagecolor{White} coprod_{i=1}^N x_i](https://df-l.com/wp-content/uploads/2024/06/64c84feef576affcd4a7bdeb785a943c.png) |
begin{matrix} coprod_{i=1}^N x_iend{matrix} |
![pagecolor{White} begin{matrix} coprod_{i=1}^N x_i end{matrix}](/wp-content/uploads/replace/ce4cb4436ed10e7119a2b41b2fa1e9a3.png) |
|
极限 |
lim_{n to infty}x_n |
![pagecolor{White} lim_{n to infty}x_n](/wp-content/uploads/replace/605c66e1aa084f24a5f2e7cf6d18614b.png) |
begin{matrix} lim_{n to infty}x_nend{matrix} |
![pagecolor{White} begin{matrix} lim_{n to infty}x_n end{matrix}](/wp-content/uploads/replace/bfce93b866cec85d3e6a8a2dfbe300d7.png) |
|
积分 |
int_{-N}^{N} e^x, dx |
![pagecolor{White} int_{-N}^{N} e^x, dx](https://df-l.com/wp-content/uploads/2024/06/7491e901a36ceb13bbbe943759b14dc8.png) |
begin{matrix} int_{-N}^{N} e^x, dxend{matrix} |
![pagecolor{White} begin{matrix} int_{-N}^{N} e^x, dx end{matrix}](/wp-content/uploads/replace/7892e660cfcfde685a4b804466bbb682.png) |
|
双重积分 |
iint_{D}^{W} , dx,dy |
![pagecolor{White} iint_{D}^{W} , dx,dy](https://df-l.com/wp-content/uploads/2024/06/44e3f99f1f29b9ee5de871e820cec5f3.png) |
三重积分 |
iiint_{E}^{V} , dx,dy,dz |
![pagecolor{White} iiint_{E}^{V} , dx,dy,dz](https://df-l.com/wp-content/uploads/2024/06/8c050c5bd1690dd42a9f175ec124cb97.png) |
四重积分 |
iiiint_{F}^{U} , dx,dy,dz,dt |
![pagecolor{White} iiiint_{F}^{U} , dx,dy,dz,dt](https://df-l.com/wp-content/uploads/2024/06/db51c71f79d301a689b3231927a0dfaa.png) |
闭合的曲线、曲面积分 |
oint_{C} x^3, dx + 4y^2, dy |
![pagecolor{White} oint_{C} x^3, dx + 4y^2, dy](https://df-l.com/wp-content/uploads/2024/06/e5791a184359ab19ff7e372b15ec0d1b.png) |
交集 |
bigcap_1^{n} p |
![pagecolor{White} bigcap_1^{n} p](https://df-l.com/wp-content/uploads/2024/06/463d4e4bd315c0c6030354a540d85829.png) |
并集 |
bigcup_1^{k} p |
![pagecolor{White} bigcup_1^{k} p](https://df-l.com/wp-content/uploads/2024/06/80059f454f87af13803b327c202dcec1.png) |
字体
斜体小写希腊字母一般用于在方程中显示变量。
正体希腊字母 |
|
|
|
特征 |
语法 |
效果 |
注释/外部链接 |
大写字母 |
Alpha Beta Gamma Delta Epsilon Zeta EtaTheta |
![AlphaBetaGammaDeltaEpsilonZetaEtaTheta!](/wp-content/uploads/replace/072415b7d3b00c0c69667348f1c20c1d.png) |
ΑΒ Γ ΔΕ Ζ ΗΘ |
Iota Kappa Lambda Mu Nu Xi Omicron Pi |
![IotaKappaLambdaMuNuXiOmicronPi!](/wp-content/uploads/replace/6a51915f5a0436937540dfec0eaa29ae.png) |
ΙΚ Λ ΜΝ Ξ ΟΠ |
|
Rho Sigma Tau Upsilon Phi Chi PsiOmega |
![RhoSigmaTauUpsilonPhiChiPsiOmega!](/wp-content/uploads/replace/2207fb0620551afa4c851468b8f1ad6d.png) |
ΡΣ Τ ΥΦ Χ ΨΩ |
|
小写字母 |
alpha beta gamma delta epsilon zeta etatheta |
![alphabetagammadeltaepsilonzetaetatheta!](/wp-content/uploads/replace/356044ddb0d39649e6d85c569b1472fc.png) |
|
iota kappavarkappa lambda mu nu xi omicronpi |
![iotakappavarkappalambdamunuxiomicronpi!](/wp-content/uploads/replace/1ccb8e44748a1638a75b2d875f42b514.png) |
|
|
rho sigma tau upsilon phi chi psiomega |
![rhosigmatauupsilonphichipsiomega!](/wp-content/uploads/replace/9ee0e26e782a244e689bf15ceefc5d14.png) |
|
|
异体字母 |
Epsilonepsilonvarepsilon |
![Epsilonepsilonvarepsilon](/wp-content/uploads/replace/fd5dcaa865cb2734dc83c6fd3b1b05e2.png) |
|
Thetathetavartheta |
![Thetathetavartheta](/wp-content/uploads/replace/63179be027b63b22b9fb70bbca2a0ec5.png) |
|
|
Kappakappavarkappa |
![Kappakappavarkappa](/wp-content/uploads/replace/7ce6712c293e3595a8da2ec954ce5321.png) |
|
|
Pipivarpi |
![Pipivarpi](/wp-content/uploads/replace/5c6af55e9a478d33f46001b78a68b3b8.png) |
|
|
Rhorhovarrho |
![Rhorhovarrho](/wp-content/uploads/replace/c0461078a341172c2185b4d5cd6d59e6.png) |
|
|
Sigmasigmavarsigma |
![Sigmasigmavarsigma](/wp-content/uploads/replace/2d02cded5d12cf7274be632665667f28.png) |
|
|
Phiphivarphi |
![Phiphivarphi,](/wp-content/uploads/replace/ec438c035ea2f8be92df23a3462302ee.png) |
|
|
已停用字母 |
digamma |
![digamma](/wp-content/uploads/replace/a1c6bd63d961f2b20d6415fad9f22ded.png) |
Ϝ[1] |
粗体希腊字母 |
|
|
特征 |
语法 |
效果 |
大写字母 |
boldsymbol{Alpha Beta Gamma Delta Epsilon ZetaEta Theta} |
![boldsymbol{AlphaBetaGammaDeltaEpsilonZetaEtaTheta}](/wp-content/uploads/replace/2bb485ff6e9e5d2eaae6f9e07f030585.png) |
boldsymbol{Iota Kappa Lambda Mu Nu Xi OmicronPi} |
![boldsymbol{IotaKappaLambdaMuNuXiOmicronPi}](/wp-content/uploads/replace/e72f751e94e29a169c15e85686aa1c29.png) |
|
boldsymbol{Rho Sigma Tau Upsilon Phi Chi PsiOmega} |
![boldsymbol{RhoSigmaTauUpsilonPhiChiPsiOmega}](/wp-content/uploads/replace/dbaf46ec29b0c9a6232923a633e4b084.png) |
|
小写字母 |
boldsymbol{alpha beta gamma delta epsilon zetaeta theta} |
![boldsymbol{alphabetagammadeltaepsilonzetaetatheta}](/wp-content/uploads/replace/6fa3405f13d6007de3a8542b4ef8db66.png) |
boldsymbol{iota kappa lambda mu nu xi omicronpi} |
![boldsymbol{iotakappalambdamunuxiomicronpi}](/wp-content/uploads/replace/cd57651b01ed6b221250c8ff74f30090.png) |
|
boldsymbol{rho sigma tau upsilon phi chi psiomega} |
![boldsymbol{rhosigmatauupsilonphichipsiomega}](/wp-content/uploads/replace/055faf40f0edee5f2891d0be1805aea3.png) |
|
异体字母 |
boldsymbol{Epsilonepsilonvarepsilon} |
![boldsymbol{Epsilonepsilonvarepsilon}](/wp-content/uploads/replace/4728970d649c3560d92acf61c526e9a5.png) |
boldsymbol{Thetathetavartheta} |
![boldsymbol{Thetathetavartheta}](/wp-content/uploads/replace/3af22c00acedbd7ec8095c60efa7e6d5.png) |
|
boldsymbol{Kappakappavarkappa} |
![boldsymbol{Kappakappavarkappa}](/wp-content/uploads/replace/c8d7a99e16e1f17f57f5e66135ebaebd.png) |
|
boldsymbol{Pipivarpi} |
![boldsymbol{Pipivarpi}](/wp-content/uploads/replace/301b22163b49069be50ec0b6456aa427.png) |
|
boldsymbol{Rhorhovarrho} |
![boldsymbol{Rhorhovarrho}](/wp-content/uploads/replace/9916b788b3a03a6d56cdebf6610db892.png) |
|
boldsymbol{Sigmasigmavarsigma} |
![boldsymbol{Sigmasigmavarsigma}](/wp-content/uploads/replace/86a565ba6a3741e77a01435e70189cb6.png) |
|
boldsymbol{Phiphivarphi} |
![boldsymbol{Phiphivarphi}](/wp-content/uploads/replace/e9cd2e99bed72c0dac606b5c48e3a3e7.png) |
|
已停用字母 |
boldsymbol{digamma} |
|
黑板粗体
- 语法
mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}
- 效果
![pagecolor{White}mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}](/wp-content/uploads/replace/439a5772efa4725de4180a45cc7f8fbf.png)
黑板粗体(Blackboardbold)一般用于表示数学和物理学中的向量或集合的符号。 备注:
花括号
中只有使用大写拉丁字母才能正常显示,使用小写字母或数字会得到其他符号。
正粗体
- 语法
mathbf{012…abc…ABC…}
- 效果
![pagecolor{White}mathbf{0 1 2 3 4 5 6 7 8 9}](/wp-content/uploads/replace/ff68e66f9a33f63a052a26606516dc84.png)
![pagecolor{White}mathbf{A B C D E F G H I J K L M N O P Q R S T U V W X Y Z}](/wp-content/uploads/replace/f1ceb0c8cb6b4735881b463741e85fbe.png)
- 备注花括号{}内只能使用拉丁字母和数字,不能使用希腊字母如alpha等。斜粗体
- 语法
boldsymbol{012…abc…ABC…alpha betagamma…}
- 效果
![pagecolor{White}boldsymbol{0 1 2 3 4 5 6 7 8 9}](/wp-content/uploads/replace/b4e7c4fe05db191cd0967ff227e7a8f5.png)
![pagecolor{White}boldsymbol{a b c d e f g h i j k l m n o p q r s t u v w x y z}](/wp-content/uploads/replace/08be27684e77123cee5e0b565fc20ee7.png)
![pagecolor{White}boldsymbol{A B C D E F G H I J K L M N O P Q R S T U V W X Y Z}](/wp-content/uploads/replace/8b3d9332ef1becb1884d41914b7b4b94.png)
![pagecolor{White}boldsymbol{alpha beta gamma delta epsilon zeta eta theta iota kappa lambda mu nu xi o pi rho sigma tau upsilon phi chi psi omega}](/wp-content/uploads/replace/231a4365a5c7311b1117a88693998ace.png)
- 备注使用
boldsymbol{}
可以加粗所有合法的符号。
斜体数字
- 语法
mathit{0123456789}
- 效果
![mathit{0123456789}!](/wp-content/uploads/replace/b9dafef0e8c4da572df57c45b1108829.png)
罗马体
- 语法
mathrm{012…abc…ABC…}或mbox{}或operatorname{}
- 效果
![mathrm{0123456789}](/wp-content/uploads/replace/c6e5eb974367f5c9e908ce02bad9e4d0.png)
![mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ}](/wp-content/uploads/replace/60cf87695487d365a7db479ab39daaaf.png)
![mathrm{abcdefghijklmnopqrstuvwxyz}](/wp-content/uploads/replace/fe5b05263e8005989e0a94279c643d54.png)
- 备注罗马体可以使用数字和拉丁字母。
哥特体
- 语法
mathfrak{012…abc…ABC…}
- 效果
![pagecolor{White} mathfrak{0 1 2 3 4 5 6 7 8 9}](/wp-content/uploads/replace/0064ccea62f3f1a1ee998eaa1c8ec61b.png)
![pagecolor{White} mathfrak{a b c d e f g h i j k l m n o p q r s t u v w x y z}](/wp-content/uploads/replace/0452d578308476fbed95289502615fac.png)
![pagecolor{White} mathfrak{A B C D E F G H I J K L M N O P Q R S T U V W X Y Z}](/wp-content/uploads/replace/fd5d0a449b76211d76e022c2faa75946.png)
- 备注哥特体可以使用数字和拉丁字母。
手写体
- 语法
mathcal{ABC…}
- 效果
![mathcal{ABCDEFGHIJKLMNOPSTUVWXYZ}](/wp-content/uploads/replace/cef71478743e561e0306ed6d68ec8799.png)
- 备注手写体仅对大写拉丁字母有效。
希伯来字母
- 语法
alephbethgimeldaleth
- 效果
![alephbethgimeldaleth](/wp-content/uploads/replace/1aa629fbe9303d23762b8dd8a7cf2598.png)
括号
功能 |
语法 |
显示 |
不好看 |
( frac{1}{2} ) |
![( frac{1}{2} )](/wp-content/uploads/replace/3ba2a72d526863671fd86d3d64a80023.png) |
好看了 |
left( frac{1}{2} right) |
![left ( frac{1}{2} right )](https://df-l.com/wp-content/uploads/2024/06/28bcd5b82ce0e92b25e8a0b4bd5be215.png) |
您可以使用 left
和 right
来显示不同的括号:
![LaTeX各种符号](http://rufzo5fy8.hn-bkt.clouddn.com/gitpage/latex/variants_of_braces.png)
备注:
- 可以使用
big, Big, bigg, Bigg
控制括号的大小,比如代码
Bigg ( bigg [ Big {biglangle left | | frac{a}{b} | right | big rangleBig}bigg ] Bigg )
显示︰
Bigg ( bigg [ Big {biglangle left | | frac{a}{b} | right | big rangleBig}bigg ] Bigg )
空格
注意TEX能够自动处理大多数的空格,但是您有时候需要自己来控制。
功能 |
语法 |
显示 |
宽度 |
2个quad空格 |
alphaqquadbeta |
![alphaqquadbeta](/wp-content/uploads/replace/ffc0891849eb19ae53dacb618746d1c0.png) |
![2m](/wp-content/uploads/replace/1026f37eb646af7590c7983664f4b921.png) |
quad空格 |
alphaquadbeta |
![alphaquadbeta](/wp-content/uploads/replace/f94367988345a9d134d0aa4b82e4babd.png) |
![m](/wp-content/uploads/replace/82e6d47b798cfab15bdb294e0b2219eb.png) |
大空格 |
alpha beta |
![alpha beta](/wp-content/uploads/replace/134b7ce5a73b02fd2b5c9598fa05ea73.png) |
![frac{m}{3}](/wp-content/uploads/replace/eb0cae6edbdd1e7a2e176e16d037c01d.png) |
中等空格 |
alpha;beta |
![alpha;beta](/wp-content/uploads/replace/7228d14db6d2f499f9757b1aeab4cc75.png) |
![frac{2m}{7}](/wp-content/uploads/replace/d93cf351aa74d1e3ba7682ee9976e4bb.png) |
小空格 |
alpha,beta |
![alpha,beta](/wp-content/uploads/replace/074a5b29cbc571ff207b4a2c98349c52.png) |
![frac{m}{6}](/wp-content/uploads/replace/b6a47cb902a840fc4a76cd8ca0f57bc1.png) |
没有空格 |
alphabeta |
![alphabeta](/wp-content/uploads/replace/7ab8aae41f92a9ea571ada8e4c35ff0e.png) |
![0](/wp-content/uploads/replace/45783dfed157fe71411d45b3a9dbf611.png) |
紧贴 |
alpha!beta |
![alpha!beta](/wp-content/uploads/replace/3b75eda7fce8836ef737fa2528397f15.png) |
![-frac{m}{6}](https://df-l.com/wp-content/uploads/2024/06/1a40f481cfa743830b2c80b87a4acccc.png) |
颜色
- 语法
- 字体颜色︰
{color{色调}表达式}
- 背景颜色︰
{pagecolor{色调}表达式}
*注︰输入时第一个字母必需以大写输入,如color{OliveGreen}
。
{color{Blue}x^2}+{color{Brown}2x} -{color{OliveGreen}1}
$${color{Blue}x^2}+{color{Brown}2x} -{color{OliveGreen}1}$$
- ```latex
x_{color{Maroon}1,2}=frac{-bpmsqrt{{color{Maroon}b^2-4ac}}}{2a}
$$x_{color{Maroon}1,2}=frac{-bpmsqrt{{color{Maroon}b^2-4ac}}}{2a}$$
颜色小型数学公式
当要把分数等公式放进文字中的时候,我们需要使用小型的数学公式。
- 苹果原产于欧洲和中亚细亚。哈萨克的阿拉木图与新疆阿力麻里有苹果城的美誉。中国古代的林檎、柰、花红等水果被认为是中国土生苹果品种或与苹果相似的水果。苹果在中国的栽培记录可以追溯至西汉时期,汉武帝时,10的
是2。上林苑中曾栽培林檎和柰,当时多用于薰香衣裳等,亦有置于床头当香熏或置于衣服初作为香囊,总之一般不食用。但也有看法认为,林檎和柰是现在的沙果,曾被误认为苹果,真正意义上的苹果是元朝时期从中亚地区传入中国,当时只有在宫廷才可享用。
并不好看。
- 苹果原产于欧洲和中亚细亚。哈萨克的阿拉木图与新疆阿力麻里有苹果城的美誉。中国古代的林檎、柰、花红等水果被认为是中国土生苹果品种或与苹果相似的水果。苹果在中国的栽培记录可以追溯至西汉时期,汉武帝时,10的
是2。上林苑中曾栽培林檎和柰,当时多用于薰香衣裳等,亦有置于床头当香熏或置于衣服初作为香囊,总之一般不食用。但也有看法认为,林檎和柰是现在的沙果,曾被误认为苹果,真正意义上的苹果是元朝时期从中亚地区传入中国,当时只有在宫廷才可享用。
好看些了。
可以使用
begin{smallmatrix}...end{smallmatrix}
或直接使用 模板。
{{Smallmath|f= f(x)=5+frac{1}{5} }}
强制使用PNG
假设我们现在需要一个PNG图的数学公式。
- 若输入
2x=1
的话:
![LaTeX各种符号](/wp-content/uploads/replace/c69ecfc41c7d202c18f90475ad674265.png)
这并不是我们想要的。
- 若你需要强制输出一个PNG图的数学公式的话,你可于公式的最后加上
,
(小空格,但于公式的最后是不会显示出来)。若输入 2x=1 ,
的话:2x=1,
是以PNG图输出的。你也可以使用 ,!
,这个亦能强制使用PNG图像。